Assignment 1

Hand in no. 2, 4bc, 6 and 7 by September 12 .

1. A finite trigonometric series is of the form $a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)$. A trigonometric polynomial is of the form $p(\cos x, \sin x)$ where $p(x, y)$ is a polynomial of two variables x, y.
(a) Write down the general expressions for trigonometric polynomial of degree one, two and three.
(b) Show that a function is a trigonometric polynomial if and only if it is a finite Fourier series.
2. Let f be a 2π-periodic function which is integrable over $[-\pi, \pi]$. Show that it is integrable over any finite interval and

$$
\int_{I} f(x) d x=\int_{J} f(x) d x
$$

where I and J are intervals of length 2π.
3. Verify that the Fourier series of every even function is a cosine series and the Fourier series of every odd function is a sine series.
4. Here all functions are defined on $[-\pi, \pi]$. (a) Sketch their graphs as 2π-periodic functions, (b) find their Fourier series and (c) determine the convergence and uniform convergence of these Fourier series (if possible).
(a)

$$
x^{2} \sim \frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x
$$

(b)

$$
|x| \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x
$$

(c)

$$
f(x)=\left\{\begin{array}{ll}
1, & x \in[0, \pi] \\
-1, & x \in[-\pi, 0]
\end{array} \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x\right.
$$

(d)

$$
g(x)=\left\{\begin{array}{ll}
x(\pi-x), & x \in[0, \pi] \\
x(\pi+x), & x \in(-\pi, 0)
\end{array} \sim \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \sin (2 n-1) x .\right.
$$

5 . Let f be a 2π-periodic function which is infinitely many times differentiable on \mathbb{R}. Show that its Fourier coefficients are of order $o\left(1 / n^{k}\right)$ for any $k \geq 1$, that is, $a_{n} n^{k}, b_{n} n^{k} \rightarrow 0$ as $n \rightarrow \infty$ for any k. Hint: Better use complex notation.
6. Let f be a 2π-periodic function whose derivative exists and is integrable on $[-\pi, \pi]$. Show that its Fourier series decay to 0 as $n \rightarrow \infty$ without appealing to Riemann-Lebesgue Lemma. Hint: Use integration by parts to relate the Fourier coefficients of f to those of f^{\prime}.
7. Let f be a continuous 2π-periodic function. Show that its Fourier series decay to 0 as $n \rightarrow \infty$ without appealing to Riemann-Lebsegue lemma. Hint: Establish the formula

$$
2 a_{n}=\int_{-\pi}^{\pi}[f(y)-f(y+\pi / n)] \cos n y d y
$$

using Problem 2.
8. Let f be a function on $[a, b]$ and $x \in[a, b] . f$ is said to be locally Lipschitz continuous at x if there are some L and δ such that

$$
|f(y)-f(x)|<L|y-x|, \quad|y-x|<\delta, y \in[a, b]
$$

Show that f is Lipschitz continuous at x whenever it is locally Lipschitz continuous at x.

